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SUMMARY

Results of application of seven well-known bond energy/group contribu-
tion methods to the experimental data on heats of formation of 70 alkanes,
including a few polymers, are reported. The earlier claims of accuracy of
many of these schemes become untenable with the emergence of new data
on nonanes and polymers, calling for more parameters to cope with the
steric interaction energy in higher branched alkanes. A new general bond
energy scheme is developed with low standard error of +0.28 kcal/mole
which is close to the experimental uncertainty. Heats of formation of some
polyolefin structures are predicted for the experimental verification in the
future. The energy terms of the new scheme are transferable to other non-
hydrocarbon organic compounds for which a general scheme is under way.

INTRODUCTION

The approximate constancy of bond energies in different molecular
structures has given rise to many useful correlations for predicting heats of
formation and other thermochemical and thermodynamic properties. The
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noncyclic alkanes CyH; ,, » particularly provide a very favorable situation
for the constancy and transferability of the C—C and C—H bond energies
because of the nearly equivalent tetrahedral bond angles, uniformity of
orbital hybridization, and the absence of any strong polarity effects. Many
of such correlation methods for hydrocarbons were reviewed by Skinner
and Pilcher [17] in 1963. Subsequently a few new methods have emerged
as has also new data on higher alkanes and hydrocarbon polymers. The
standard combustion data on ten branched nonanes obtained by Good [5],
on well-characterized a-olefin polymers [8], and a few isomeric pentanes
redetermined by Pilcher and Chadwick [14] afford a renewed test for the
successfulness of various schemes in predicting the heats of atomization or
formation in the ideal gas state. In this paper, seven existing bond energy/
group contribution schemes, some previously recognized as very successful
procedures, and a few new methods cited in standard work [7, 15], have
been applied to 70 alkanes on which precise experimental data is available
to date. A new simple bond energy scheme is developed to fit all alkanes
within a standard error of £0.28 kcal/mole which is only slightly higher
than the experimental uncertainty. The heats of formation of some sub-
stituted olefin polymers are predicted with the help of the new scheme,
which may be shortly verified in an experimental program [9].

CALCULATION PROCEDURES AND RESULTS

The experimental values of AHf(g) for most of the alkanes are taken
from the API data tabulated in the form of heats of atomization, AH;, as
given in Ref, 19, using the given values of the heats of atomization of
carbon and hydrogen. The new combustion data [14] on n-pentane, iso-
pentane and neopentane are adopted in place of the old values. The com-
bustion data on 11 nonanes in the liquid state obtained by Good [5] are
combined with the heats of vaporization of these compounds as given in
the API tables. The latter values are mostly on the basis of predictions of
the Greenshields-Rossini correlation scheme [6] as it has been established
that the uncertainty in the heat of vaporization so calculated seldom dif-
fers from the experimental one using vapor pressure data. Heats of forma-
tion in the ideal gas state of the four hydrocarbon polymers were obtained
from recent combustion data on these polymers which are well character-
ized in respect to partial crystallinity, using the “hypothetical” heat of
vaporization calculated by the scheme of Tatevskii et al. [20] extended to
polymers (10).
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Sauders-Matthews-Hurd’s Method [20]

The 11 group contribution parameters of the SMH method in terms of
the heat of formation are, in kcal/mole: —CHj;, ~10.05; >CH,, -4.95;
>CH- (2nd carbon), -1.57; >CH— (3rd or higher), -0.88; >C<(2nd car-
bon), 0.85; >C< (3rd or higher), 2.45; and the steric correction terms:

|
>CH—-CH<, 0.75;>CH—CZ, 2.39; >CH-CH—CHL, 2.30; =C—-C<, 4.61
and 0.88 for each —C,H; side chain. The two additional steric terms
recommended for this scheme from the present work, are: [C4CC;3] =
2.14 and {C,CC,4] = 5.60, as these improve the precision substantially.

Tatevskii’s Scheme [20]

The following values of the nine parameters Bjj, of the scheme of
Tatevskii, Benderskii, and Yarovoi (TBY), expressed as the heat of forma-
tion contribution (kcal/mole), were used for calculations: By, -12.54;
Blg, -10.79; qu, -10.03; By, -4.96; B, -2.58; B, -1.35; B33, 0.98;
Bis, 3.14; and B4y, 6.19. The two new parameters recommended from the
present work are: [C4CC3] = 1.94 and [C,CC4] = 5.35. The numerical
subscripts in the above terms indicate the type of sp® carbons forming the
bond; primary (C,), secondary (C,), tertiary (C3), etc., and (C), any type,
the contributions from their associated C—H bonds being implied in the Bj
terms,

The Somayajulu-Zwolinski Generalized Treatment [19]

The generalized SZ-method gives the following equation for computing
the molar heats of atomization from which heats of formation are worked
out:

E(CnH2n+2) = (2ﬂ + 2) EO + (l'l - 1) ECC + 3n161 +4 n282 +3 n363

+ 2([1'] - 2[12 -3113)54 +1s (1)

where n = total number of carbon atoms in the alkane, n;; n,, n3, and ng,
respectively, are the numbers of primary secondary, tertiary, and quaternary
carbon atoms; and m, and 1 are special numbers representing, in a consoli-
date manner, the weighted sum of various steric interactions in an alkane
structure for which the computational procedure is given. The seven param-
eters of the equation have the values, in kcal/mole: E, = 99.395 (the energy
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of the C—H bond in methane); E¢c = 85.42 (the energy of the C—C bond
in diamond); §; = -1.06;8,; = -0.95;6; = -0.84; §, = 0.02; and s = -0.22.

Greenshields and Rossini’s Scheme [6]

In this (GR) scheme the variation of AHf(g) of an isomer from the cor-
responding n-alkane (for which the established standard values of the API
are assumed) is given by the equation:

AHf (isomer,g) - AHf(n-alkane,g) =-0.469c, - 1.364c, + 1.139 AP,

12.508Aw ", '
+ —_—
n(n- 1) + 1.978P," +5.19P," (2)

where n is the total number of carbon atoms in the alkane; ¢; and c, are
the numbers of tertiary and quaternary carbons; P3, the total number of
pairs of carbon atoms, 3 bonds apart; o, the Wiener number, the total
quarternary carbon atoms separated by one carbon atom; and P,", the num-
ber of pairs (quarternary + tertiary) separated by one carbon atom. The last
two terms are the same as designated by [C4CC,4] and [C4CC;] in the pre-
sent paper. The method is not applied to normal alkanes since they form the
basic data from which the isomeric variation is computed. It is also not appli-
cable to polymers due to the lack of a satisfactory procedure [10] of
calculating the Wiener number per repeat unit of a polymer.

Allen and Skinner’s Procedure [1, 18]

The Allen’s scheme alone does not seem to correlate well enough with
higher, branched alkanes, but with Skinner’s steric term [S] added to it, it
becomes an extremely accurate procedure. The calculation-of [S], how-
ever, requires a detailed examination of an alkane in respect of 21 types
of gauche 1,4 steric interactions of hydrogens in the staggered position of
the molecule and a factor such as the “angle-release mechanism” for the
strained bonds, involving in all some 25 parameters. For certain alkanes
such as 2,2,3,4- and 2,2,4,4-tetra methyl pentanes, Skinner was unable to
calculate [S] due to the unrealistic proximity of the H. . H atoms in the
staggered configuration. We did not, therefore, attempt to extend this
method for nonanes but have simply taken Skinner’s application to 52
alkanes [17] based on his following equation:

AHa(CpHzp4a ) = -15.54 - 2.35n - byt - C4A + [S] 3)
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where b; = number of adjacent pairs of C3—C; bonds, C4 = number of
adjacent trios of C4—C4 bonds, 7 = 2.58, A = 0.55, and [S] = steric
repulsion energy calculated individually.

Overmars and Blinder’s Method [13]

The four averaged, atomization energy terms of the OB scheme are:
E(C-C) = 83.645, E(C—H,p) = 98.590, E(C—H ) = 98.164, and E(C-H,t) =
97.736 kcal/mole. These are transformed to the heat of formation terms
as: (C—C) = 1.798,(C—H"") = -3.766,(C—H"") = -3.340 and (C-H") = -2.912.

Verma and Doraiswamy’s Procedure [21]

The group contribution terms recommended in this (VD) method are:
—CH;, -10.248; >CH,, -4.941; >CH—, -1.287; >C<, 0.617; a side-chain
with 2 or more C-atoms, 0.800; >CH—(‘ZH—CH<, -1.200; and 0.600 for a
pair of adjacent >CH— and >C<. These terms as well as the heat of forma-
tion in kcal/mole at 298.15°K were derived from their simplified linear re-
lationship: (AHf)T = A + BT.

The procedure of Benson et al. [2] has been omitted in view of its
limited accuracy, which was pointed out by the authors themselves, for Cy-
alkanes and beyond.

The New Bond Energy Scheme

In the development of the new scheme, the four basic terms 1) the sp3-
sp> carbon-carbon bond, C*—~C® = 0.45 kcal/mole; 2) the carbon-primary
hydrogen bond, C*—H""’ = -3.48 kcal/mole; 3) carbon-secondary hydro-
gen bond, C3—H" = -2.68 kcal/mole; and 4) carbon-tertiary hydrogen
bond, C3—H' = -1.78 kcal/mole are taken from the original scheme of
Laidler {11] as recommended by Mackle and O’Hare [12] and Cox [4].
The sp® carbon is further discriminated, as in the Tatevskii’s scheme, into
primary, secondary, tertiary, and quaternary carbons designated as C,, C;,
C;,and C,, the common superscript 3 indicating tetrahedral hybridiza-
tion being eliminated. A further distinction was made as to whether C,
and C4 carbons are situated in the terminal position, or in the third 3rd or
higher position from the nearest end of the longest extended chain, as is
done in the SMH scheme. In order to fit in the experimental data of
alkanes Nos. 53 and 54 in Table 2, it was further necessary to distinguish
the tertiary carbon which is deeply situated (embedded) in the alkane, i.e.,
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third or higher from any end, from that of the main extended chain or its
branches, separately as (C3)* and to assign higher energy terms to its bonds
with C; or C4. At least two more such parameters are anticipated for (C4)*,
the exact values of which must await future experimental data.

The bond energy terms of the new scheme are presented in Table 1.
These terms represent the averages derived from relevant hydrocarbons also
shown in Table 1, bearing serial numbers as per Table 2. Some economy of
parameters can be achieved in the scheme without any appreciable increase
in the over-all standard error. Thus, parameters C3—C3; = 1.03 and C;,—C; =
2.77 admitted in the scheme just for one single alkane of each type (Nos. 12
and 21 in Table 2) can be replaced by the closer terms: (C;3)—Cj3; =1.78
and (C4)—-Cy = 3.56, respectively. This yields a 14-parameter scheme, having
a precision of +0.31 kcal/mole, better than any of the existing methods for
alkanes except the Allen-Skinner scheme, but requiring elaborate examina-
tion of an alkane structure as mentioned before. The parameter (C3)* —C4 =
5.78, for an embedded tertiary carbon, is also a single-source value derived
from 2,2-dimethyl-3-ethyl pentane, AHf(1) exptl + AHy from GR scheme.
At least the experimental heat of vaporization of this alkane was needed
for the confirmation of this term underlined in Table 1, as also are the
former two.

The result of uniform application of all eight schemes to 70 alkanes i is
presented in Table 2 in the form of the absolute error A, which is [AH f(g)
observed - AH f(g) calculated]. At the end of Table 2 are glven the average
error (Z + A)/N (dmregardmg sign) and the standard error (EA /N) . The
experimental AHf(g) of 2,3-dimethyl pentane shows a uniform disagreement
with all the important schemes, the experimental value being on an average
0.9 kcal more negative, and it is likely that the value may be incorrect.

DISCUSSION

A comparison of the predicting ability of the various schemes is made
in Table 3. The first five schemes are generally considered as very success-
ful for alkanes, but their former claims of a precision to the tune of the
experimental uncertainty (0.3 kcal/mole) are not maintained by the new
experimental data on branched nonanes [5] and long-chain polymers [8].
Methods 1 and 2 in Table 2 were found deficient merely in respect of two
steric terms; namely, the vicinal interaction of a pair of quaternary (Cs)
carbons separated by one C, or C4 and C; one carbon apart in the chain.
This steric factor was duly recognized by the scheme of Greenshields and
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Rossini. When these steric correction terms were numerically worked out
separately and incorporated in Tatevskii’s scheme and the Sauders-Matthews-
Hurd’s scheme, their precision was improved dramatically, as may be seen
from Table 3. The calculated terms for the two schemes so modified are
given in the previous section, and the estimates of error affected by this
introduction are parenthesized in Table 2. Methods 3 and 4 have good pre-
cision considering the substantial economy achieved in the number of basic
parameters they employ, but the calculation of structural features and
numbers associated with them is rather laborious and complicated; for
instance, the m and 1 of the SZ scheme or the Platt and Wiener numbers

of the GR scheme. Also, a few more basic parameters may still be want-
ing in these schemes in order to cope with the higher-order steric inter-
actions in more branched higher alkanes than are presently available ex-
perimentally. The easy applicability of Methods 1 and 2, and also of

the general scheme developed in this work, fully justifies the larger number
of basic parameters.

A poorer precision of £1.35 kcal/mole now shown by the method of
Overmars and Blinder has dismissed their earlier claim [13] that only four
parameters properly averaged by least-square procedure brought about an
over-all agreement of £0.58 kcal/mole “comparable with more elaborate
schemes.” Clearly more than four parameters are needed to deal with the
steric interaction energies in alkanes. The standard error as high as
+2.8 kcal/mole given by the Verma-Doraiswamy procedure invokes com-
ments. The results are wide and inaccurate at least for the one tempera-
ture (298°K) tested here, and linear extension of such values to other
temperatures on the basis of an oversimplification of the Cp-T relationship
suggested by them is misleading. These authors tested their parameters
on only three alkanes out of over 40 on which experimental data up to
1500°K were readily available from the API tables. '

In the new scheme as many as 16 parameters were necessary to achieve
a precision of £0.28 kcal/mole, close to the experimental uncertainty. To
make these parameters transferable to substituted hydrocarbons and other
organic compounds, the total steric energy in a molecule (though primarily
from nonbonded interactions) must be split up and assigned bondwise
rather than to a few interlocked parameters such as those of Schemes 2 to
4 which are applicable to alkanes only. Another advantage of such bond-
wise energy assignment is that it gives a relative picture of bond strengths
in a molecule and indicates at least approximately which of the relevant
atoms would be more labile than others and which bond more susceptible
in a chemical reaction. Although empirically assigned, these well correlated
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bond energy terms show close parallelism with the actual dissociation
energies of the bonds; for instance, the dissociation energies of the Ci—Cj
bond in methyl-substituted ethanes compared by Somayajulu and
Zwolinski [19] bear a good relationship with our C—C bond energies in
Table 1, Column 5. The bond energy terms formulated for alkanes in this
paper form a part of a general scheme for organic compounds to be pub-
lished in subsequent papers. The temperature coefficient of at least some
of the bond energy terms will also be possible, based on a more exact

Cp T relationship (7].

Polymers [10, 3]

The scheme is applied to some polyolefins structures that may become
available experimentally in well characterized physical states. These are
given in Table 4.

It appears that Polymers 4, 7, 8, and 10 in Table 4 should involve high
steric hindrance as evidenced by their less negative heats of formation pre-
dicted from the alkane analysis. The polymerization of the corresponding
2-alkylalkenes may not be as facile as other a-olefins which polymerize
readily by Ziegler-Natta catalysts. This inference is, however, based on
energy (not free energy) considerations.
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